第341章 一个方案策划书引发的风波 (第2/3页)
的完整版,这几位专家即便是签署了保密协议,拿到的依旧只有各自负责的那一部分。
甚至……万院士看到的也并非最初的完整版,而是在洛珞的指导下删减了一些关键部分的。
而接下来,他们最主要的任务,便是在各自的领域里,通过一些实验和计算,论证他们所负责部分方案的可行性论证。
王启明教授戴着老花镜,在电子显微镜室反复审视方案中“仿生蜂巢基板”的设计图和参数——碳化硅纤维编织的六边形网格,目标孔隙率85%。
他放下图纸,深吸一口气:
“惊为天人!
这个多层复合仿生结构理念,利用自愈合多元碳化硅内层抵抗热流,中层液态金属浸润蜂巢基板传热散热,外层高熵合金骨架支撑,这个思路在理论上完美解决了第一壁的核心矛盾:
抗辐照、抗高温、高效导热!”
“特别是这个‘浸润-热传导-抗冲击动态平衡临界曲线图’”
王启明指着附件中的复杂图表:
“它将材料在亿度高温、中子轰击下的界面状态与温度、流速、应力等参数的关联清晰地量化呈现出来,理论上的创新性和指导性极其强大,远超当前所有公开文献。”
助手递上最新的抗辐照测试报告:
“王老,按我们现有的SIC复合材料,在10^18 n/cm的中子通量下,孔隙率只能做到35-40%,且辐照肿胀和脆化严重。”
他有些欲言又止:
“要达到方案要求的85%孔隙率.这‘蜂巢’怕是立不起来,或者很快就粉化了。”
王启明神色凝重地点头:
“理论框架无懈可击,甚至指出了未来材料的方向,但实现它……无疑是巨大的工程挑战。”
“我们需要专门设计全新的碳化硅纤维制备工艺、寻找能让液态金属在极端条件下稳定浸润基板的改性剂,更要建造能模拟聚变堆严苛中子、高温环境的特殊辐照装置来验证每一种新材料配方的性能。”
……
周建军教授在风洞基地的控制室内,看着屏幕上根据方案复现的“液态锂铅(LiPb)在强磁场中的闭环自持循环与氚增殖”流体模型运行。
“了不起!”
周建军眼中闪着光:
“将液态LiPb同时用作冷却剂、氚增殖剂和能量传递介质的‘三合一’设计,与约束磁场进行直接耦合反馈的构想,逻辑上高度自洽!这大大简化了聚变堆的能流传递链,效率潜力巨大。”
“那个关于流速、磁场强度和流型之间关联的拓扑图谱,其精妙程度是我从未见过的。”
然而,当技术人员尝试将磁场强度模拟提升到方案要求的8特斯拉,这几乎是EAST装置4T极限的两倍数据时,监控画面剧烈扭曲。
“磁场引发的TM不稳定性爆发了!”
助理指着飙升的涡量监测数据:
“速度超过2.5m/s就出现大规模撕裂涡流,这比ITER预测的临界值还低!我们的磁流体动力学模型在强场下的预测精度有限。”
周建军看着溅满防弹玻璃的镓铟合金,面色严肃:
“理论的闭环设计堪称艺术品,但液态金属在如此强的磁场和高流速下,其MHD效应导致的流动不稳定性和对结构材料的潜在冲蚀,我们缺乏足够精确的预测工具和实验数据。”
“必须建立专门的强磁场液态金属实验回路,用真实LiPb进行长时间、不同工况的稳定性测试,这不是靠算能算准的,必须看到、测到!”
……
李卫国工程师在图纸和EAST庞大的极向场线圈原型机之间来回打量。
“直径3米的微型磁线圈?磁约束强度还要这么高?”
李卫国先是困惑,随后是赞叹:
“方案里这个磁箍缩惯性约束的路径选择本身就跳出了托卡马克的框架,很有魄力!这种设计理念和目标,确实指向了更高功率密度和潜在的可移动性,只是这个思路是全新的。”
他随即指着仓库中三层楼高的线圈原型:
“但看看现实!要实现同等约束强度的超导磁体,光低温支撑结构就得2000吨!缩小到方案体积?高温超导带材Nb3Sn的性能极限、复杂磁场构型带来的巨大电磁力平衡问题、微型化后的冷却效率每一个都是工程上的硬骨头。”
墙上的ITER进度表印证着困难:
“ITER中央螺线管直径5.3米重达千吨,安装周期预计到2015年,方案里的设备尺寸和复杂度,远超当前最先进工程能力。”
(本章未完,请点击下一页继续阅读)